vacuum cleaner turbine design

Autodesk InventorAutodesk Inventor® 3D CAD software offers professional-grade tools for 3D mechanical design, documentation, and product simulation. Develop, manage, and deliver great products with Digital Prototyping capabilities. Users can input driving loads, friction characteristics, and dynamic components, then run dynamic simulation tests to see how a product will work under real-world conditions. Finite element analysis (FEA) lets users validate component design by testing how parts perform under loads (using actual load information instead of estimates). ANSYSANSYS CFD allows engineers to test systems by simulating fluid flows in a virtual environment — for example, the fluid dynamics of ship hulls; gas turbine engines (including the compressors, combustion chamber, turbines and afterburners); pumps, fans, HVAC systems, mixing vessels, hydrocyclones, vacuum cleaners, etc.ANSYS CFD allows engineers to test systems by simulating fluid flows in a virtual environment — for example, the fluid dynamics of ship hulls;
pumps, fans, HVAC systems, mixing vessels, hydrocyclones, vacuum cleaners, etc. MasterCam X5Mastercam’s comprehensive set of predefined toolpaths—including contour, drill, pocketing, face, peel mill, engraving, surface high speed, advanced multiaxis, and many more—enable machinists to cut parts efficiently and accurately. Mastercam users can create and cut parts using one of many supplied machine and control definitions, or they can use Mastercam’s advanced tools to create their own customized definitions. Mastercam also offers a level of flexibility that allows the integration of 3rd party applications, called C-hooks, to address unique machine or process specific scenarios. CFTurboCFturbo® Software & Engineering GmbH is an engineering company offering CAE services and software development focusing on fluid dynamics/turbomachinery.in particular CFD (flow simulation) and FEM (strength calculations) – and optimisation, prototyping and design of pumps, fans, ventilators, compressors, turbines and turbo chargers.
Our strength lies in our ability to combine modern design and simulation methods, thus permitting the swift, cost-efficient configuration and assessment of new designs, as well as targeted optimisation of component geometry.Big thanks to Dyson for reviewing this teardown.We’ve long been fans of the innovative work of Dyson. Their products are immensely creative, beautifully designed, and mechanically impressive. And on top of that, we love Dyson’s transparency and willingness to share just how their products are made.So we got our hands on one of the classic Dyson Ball Vacuums to venture inside and see for ourselves the mechanics that make up one of their flagship products.There are 5 main systems that make up this awesome vacuum cleaner:We’re going to take a look at each of these systems to investigate the inner-workings of Dyson’s technological innovation. The motor is the heart of the vacuum cleaner and is the main instrument of the impressive pressure drop and suction that Dyson delivers.
The motor is encased in the classic purple ball as the housing unit, made of GFPP (glass-filled polypropylene). It’s interesting, and ingenious, that they placed the motor in the center of the wheel to maximize space and create a very low center of gravity.upright vacuum cleaners electroluxAfter removing the main motor housing we’re presented with the pressed steel casing and the motor itself.compare volta vacuum cleanersYou can see the stretch marks here, which are caused from increased surface tension when forming the pressed steel.vacuum cleaner stores in tampaYou can also see the heat stakes around the top ring. A single heat pad would have been used to stake all of the plastic fasteners on the top to secure the housing, which definitely saves on assembly costs.
The turbine, which creates the pressure drop in the air, is a fantastic low-cost manufacturing solution to a very complex geometry. Here the 3D turbine is broken into 3 different 2D shapes which are stamped and then assembled. The marks on the top are the rivets from assembly.pare that to a worm gear, which can fall in the 50-60% efficiency range depending on the ratio.The PCB in the vacuum head is the only one we found in the entire vacuum cleaner and guessing by the very large capacitor, we’d say it’s used to step down the voltage and current supplied to the smaller motor.This nifty switch isn’t a major player, but we love mechanisms and this one that releases the motor is pretty cool so we couldn’t help but point it out. If you’re interested in how it works, send us a note. :)The cyclone is the true invention in this product and what Dyson is known for. The cyclone is all about filtering the dust and dirt from the airflow of the machine. At a basic level, the principal works through the addition of mass by increasing the acting G-force through increased acceleration.
Yep, that’s the basic level.And because this is so cool, let’s geek out a bit to explain the physics further. Quick physics 101 recap: A1 * v2 = A2 * v2, where A is the cross-section area and v is the velocity. So as the cross-section area decreases, the velocity increases creating more kinetic energy. Due to good ol’ conversion of energy, as the energy increases the pressure must decrease in parallel since pressure is really just energy density (P = energy / volume). And if you really want to geek out, ask us to explain Bernoulli’s equation and laminar flow!Pheww, that was fun! 10 points for everyone still with us.These guys make for some awesome suctions.Here’s an impressive 2-part molded piece with 6 actions to create the mesh. We guessed that the small holes were created using EDM (electric discharge machining), but Dyson confirmed that they were in fact molded using 2mm rods attached to a retracting action of the mold tool.And following our love affair with mechanisms, here’s a simple push button used to release all the dust bunnies into the trash.
We also love the different colors here that highlight the lever.The handle is one of the simpler pieces on the vacuum, but is a terrific example of expert material use for cost savings. The main arm of the handle is made of extruded aluminum and then the rest of the pieces are different types of plastics. All the cosmetic plastics are ABS, the cheaper non-cosmetic plastics are PP (polypropylene) and the stronger plastics are GFPP (glass-filled polypropylene) and PC (polycarbonate).Above is also another great rocker mechanism for quick release of the attachment heads.Throughout the plastic parts we see a standard 2.5mm wall thickness. Additionally, large ribs are used to increase the structural integrity of the ABS parts. Some places have sink marks due to these large ribs, but it appears to be a non-issue for Dyson.On the handle we can also see flow lines from the injection molding process, which occur due to small gates. This appears to also be a non-issue for Dyson though. In fact, it actually appears to be a part of their aesthetic.
Interesting that their product is still considered so beautifully designed even with apparent sink marks and flow lines. It’s a brave new world, people!The main body has some very impressive injection molded parts. So much so that we had to take a dremel to the parts to figure out just how they made them!When we first open the body up, we’re presented with the only switches in the entire vacuum. In the photo above you can see where the power cord snakes through to the main electronics. Since people have a tendency to yank on the cord, it’s clear the Dyson team spent a lot of time creating a secure strain relief for the cord, diverting direct force on the connectors.On the right, you can see our favorite latch mechanism on the vacuum which releases the cyclone. It’s a spring toggle mechanism that rocks to release the cyclone.Side note: check out all the incredible toggle mechanisms from this youtube user.It’s interesting to note that Dyson opted to spend more money on larger industrial switches that can take direct 120/240V power rather than building a PCB to step down the voltage and current.
Dyson’s keeping it simple.After disassembling all the components of the body we became fascinated by the curved injection molded ABS parts. At first glance it was challenging to understand how they created slides that went into the 180 degree tube pieces, but after some further investigation (and dremeling) we saw that the curved parts are actually 2 separate pieces welded together with a sleeve. It looks like an epoxy was used to weld the 2 ABS parts together to give a watertight seal. Remember, these tubes are holding the vacuum!Another interesting note is that all the fasteners used are Torx screws: 6-point star-shaped security screws. While these fasteners are more expensive, they provide 3 key benefits:1. They won’t strip during assembly2. Protects Dyson from counterfeit3. Makes it difficult for customers to disassemble their products (not us!)The clear accordian tube above would have been manufactured and then spray painted while closed to give it the silver color.The final piece we found interesting was the foot brake.